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Abstract An applicable formulation of ab initio crystal
structure determination based on the Dirac equation is pre-
sented. For this purpose, Dirac equation without regard to
electron correlation effects is reduced to its spin-free one-
component form by means of regular approximations, and
then, connected to crystallographic notions. Thus, a relativ-
istically valid structural description of a crystal structure is
made possible by using single crystal X-ray diffraction data.
The relativistic scheme was tested with a previously reported
crystal structure containing heavy elements, and the results
show that accuracy of the phase assignment process increases
as the order of regular approximation is raised.

Keywords Dirac equation · Regular approximations ·
X-ray crystallography · Phase problem

1 Introduction

The number of crystal structures of the compounds contain-
ing heavy elements deposited in Cambridge Structural Data
Base (CSD), in which relativistic effects become more visible
than light organic compounds, has exponentially increased
in recent years [1]. The relativistic corrections on the crys-
tal structure determination for the compounds containing
heavy elements were examined by many authors [2–4]. They
endeavored to incorporate the relativistic effects into crys-
tallography by calculating the atomic scattering factors for
various elements via Dirac–Hartree–Fock wave functions
without modifying conventional formulation of X-ray
crystallography. X-rays are collectively scattered by both the
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innermost and outermost electrons of an atom, and the X-ray
diffraction experiments on crystalline materials give us only
a set of measured intensities of diffracted beams. If the ampli-
tudes and the phases of diffracted X-ray beams can be found,
electronic density distribution, or in other words, positions
of atoms in the unit cell can be obtained by a Fourier trans-
form. The recovery of the phases from only the magnitudes of
diffracted X-ray beams is termed the “phase problem" and
it is of a great importance in development of conventional
crystal structure determination procedure. In this regard, our
primary interest will be addressed to improvement of alter-
native methods in order to obtain a relativistically valid sys-
tematic procedure of crystal structure determination for such
compounds without solving conventional phase problem by
incorporating with experimental data.

The importance of relativistic effects [5] in chemistry of
the compounds containing heavy elements has been already
well recognized. For relativistically treating the effects aris-
ing from the existence of heavy elements, one has to solve
the Dirac equation instead of the Schrödinger equation. The
Dirac equation involves a four-component Hamiltonian and
generates negative energy eigenstates besides positive ones.
The solutions with negative energy indicating the existence of
positronic states are generally neglected by chemists because
of the fact that chemical properties of a system are essen-
tially related to its electronic states. Therefore, the four-
component Dirac equation is reduced to two parts called as
the large (for electronic states) and small component (for
positronic states). If this can be done without a significant
loss of accuracy in the calculations, the exact large com-
ponent is fully equivalent to the four-component electronic
solutions. In order to separate electronic and positronic solu-
tions, there are several different methods such as Foldy-
Wouthuysen (FW) transformation [6], Douglas–Kroll (DK)
[7], Douglas–Kroll–Heß(DKH) [8,9] and relativistic scheme
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by eliminating small component (RESC) [10]. Among these
methods, DK (or DKH) approximation, which supplies an
efficient way of handling the matrix elements of two-
component Hamiltonian, has tractable results in the presence
of non-singular operators corresponding to electron–nucleus
attraction. Although RESC method is based on density func-
tional formalism [11–13], FW transformation has also seri-
ous singularity problems [14]. An alternative scheme known
as regular approximation (RA) [15–18] has been proposed to
avoid the presence of singular operators especially observed
in vicinity of the nucleus. The regular Hamiltonian methods
have been competitive to the DKH approach with some of the
latest improvements in RA[19–22]. However, the spin infor-
mation of electrons has been implicitly included in the Dirac
equation or other two-component Hamiltonians. Treatment
of these equations in spin-dependent form is of mathematical
difficulties. Since RAs are mathematically more convenient
than the other two-component methods in order to attain our
purpose here, they can be used to take into consideration the
relativistic features in the theory of crystallography.

To determine a crystal structure and to enhance struc-
tural information from a routine X-ray crystallographic study,
several alternative methods having regard to only quantum
mechanical principles have been developed in recent years
[23–25]. Among them, Bethanis et al. [24] showed that the
ab initio determination of the positions of the nuclei in a
crystal can be achieved by exploiting the time-independent
Schrödinger equation for an electron without regard to
electron–electron repulsive interactions. Although such an
oversimplification seems to be inappropriate for a satisfac-
tory quantum mechanical description for the system of
interest, Bethanis et al. have showed that it suffices to obtain
acceptable results about the positions of nuclei. Here, crys-
tallographic notions are incorporated into Schrödinger-like
spin-free one component form of the Dirac equation by work-
ing within the momentum space. In this regard, molecular
wave functions in momentum space have to be considered
inevitably. It has been previously reported that the repulsive
electron–electron interactions in a molecule do not change
the total momentum but in turn lead to an inter-electronic
momentum transfer between each pair of electrons [26]. As a
result of this, the phase invariance in one-electron
Schrödinger-like equation also holds for the exact equation
including inter-electronic repulsive interactions. Here, the
term of “phase invariance" means that the phase of the
Fourier transform of an eigenfunction is invariant under the
potential multiplication (or convolution operation in momen-
tum space) [24].

2 Theory

In this section, an overview of regular approximations
required for derivation of pertinent relativistic equations is

presented in a succinct manner. Let us consider the four-
component Dirac equation for an electron under the effect of
an external potential V :

ĤDΞD = EΞD, (1)

where (in atomic units; h̄ = 1, me = 1, 4πε0 = 1, c =
137.03599)

ĤD = cαp̂ + βc2 + (V − c2)1, (2)

or in two-component matrix form

ĤD =
(

V cσ p̂
cσ p̂ V − 2c2

)
, (3)

and the 4-spinor for wave function ΞD is defined as

ΞD =
(
χ L

χ S

)
. (4)

Here, L and S denote the large and small component of the
4-spinor, respectively. In addition, the standard symbols are
used for Dirac (α,β) and Pauli spin (σ ) matrices and 1 is the
4×4 unit matrix. Other symbols have their usual meanings.

Using the exact FW (EFW) transformation [27] defined
as

Û =
⎛
⎜⎝

1√
1+X̂† X̂

X̂†√
1+X̂† X̂

−X̂√
1+X̂ X̂†

1√
1+X̂ X̂†

⎞
⎟⎠ , (5)

the part of Hamiltonian for the positive energy states resulting
from the unitary (Û † = Û−1) EFW transformation (ĤEFW =
Û ĤDÛ−1) is

ĥ+
EFW = 1√

1 + X̂† X̂

×
(

V + cσ p̂X̂ + X̂†cσ p̂ + X̂†(V − 2c2)X̂
)

× 1√
1 + X̂† X̂

, (6)

and the transformed 4-spinor is

ΞEFW =
⎛
⎜⎝

χ L+X̂†χ S√
1+X̂† X̂

−X̂χ L+χ S√
1+X̂ X̂†

⎞
⎟⎠ . (7)

From the off-diagonal elements of the ĤEFW matrix, it fol-
lows that X̂ must satisfy [27]

2c2 X̂ + [X̂ , V ] + X̂cσ p̂X̂ = cσ p̂, (8)

so that the lower 2 × 1 part of the transformed 4-spinor is
vanished. In other words, the last equation means that opera-
tor X̂ has the special property to connect the large and small
components of the Dirac 4-spinor,

χ S = X̂χ L . (9)
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Using Eq. (9) into Eq. (7), for the solutions with positive
energy, one can easily obtain

Ξ+
EFW =

√
1 + X̂† X̂χ L . (10)

The exact X̂ can be obtained for a given eigenstate of the
Dirac equation as

X̂ = c

2c2 − V + E
σ p̂, (11)

if it operates on the large component of the eigenstate with
eigenvalue E . In order to avoid the energy dependence in
Eq. (11), an expansion can be used as follows

1

2c2 − V + E
= 1

2c2 − V

(
1 + E

2c2 − V

)−1

=
∞∑

n=0

(−1)n En

(2c2 − V )n+1 . (12)

The term in the bracket above is of importance to make such
an expansion. The expansion is valid for |E | < 2c2, which
implies the case for all bound states. For large V , close to
the nucleus, this approximation is written in terms of inverse
powers of the potential. For small V , this expansion is stated
by powers of c−2 far from the nucleus. Since the energy-
dependent terms in the expansion is small for relatively small
E , it is reasonable to neglect them. In the light of this approx-
imation, X̂ in Eq. (11) is reduced to its following definition

X̂ = c

2c2 − V
σ p̂. (13)

Inserting this definition of X̂ into the ĥ+
EFW Hamiltonian, one

can obtain the regular FW-Hamiltonian ĥRFW defined as

ĥRFW = 1√
1 + X̂† X̂

(
V + σ p̂

c2

2c2 − V
σ p̂

)
1√

1 + X̂† X̂
.

(14)

The term within the bracket in Eq. (14) is the well-known
ZORA (zeroth order regular approximation) Hamiltonian

ĥZORA = V + σ p̂
c2

2c2 − V
σ p̂. (15)

The ZORA Hamiltonian may be written as follows

ĥZORA = V + 1

2
σ p̂R̂σ p̂, (16)

where

R̂ = 1

1 − 1
2α

2V
= 1 + 1

2
α2R̂V, (17)

and α is the fine structure constant defined as α = 1/c. The
ZORA Hamiltonian in powers of α2 is

ĥZORA ≈ 1

2
p̂2 + V + 1

4
α2σ p̂V σ p̂. (18)

An improvement over ZORA is obtained by the first-order
terms with respect to the metric perturbation [11,14,28] and
brings about what is called as the FORA (first order regular
approximation) Hamiltonian:

ĥFORA ≈ V + 1

2
σ p̂R̂σ p̂ − 1

8
α2(σ p̂R̂2σ p̂V + V σ p̂R̂2σ p̂)

− 1

16
α2(σpR̂2σ p̂σ p̂R̂σ p̂ + σ p̂R̂σ p̂σ p̂R̂2σ p̂),

(19)

whose α-expansion recovers all terms of well-known Pauli
Hamiltonian:

ĥFORA = 1

2
p̂2 + V + 1

4
α2σ p̂V σ p̂ − 1

8
α2( p̂2V + V p̂2)

−1

8
α2 p̂4 + · · ·

3 Relativistic X-ray crystallography

The Hamiltonians given in Eqs. (18) and (19) are still in spin-
dependent form. To obtain spin-independent one-component
Hamiltonians, let us first consider the Hamiltonian given in
Eq. (16). If the operator R̂ in Eq. (17) is expanded in terms
of the powers of potential, and then this expansion is inserted
in Eq. (16), one can obtain a spin-free one-component form
as follows,

ĥZORA ≈ p̂2

2
+ V − 1

8
α2 p̂4 + 1

32
α4 p̂6. (20)

Similarly, FORA Hamiltonian in Eq. (19) can be also written
as

ĥFORA ≈ p̂2

2
+ V − 1

8
α2 p̂4 + 1

16
α4 p̂6. (21)

While obtaining the last two equations, the fact that one can
approximately set 1

2α
2 p̂2 ≈ −α2V in the regions close to the

nucleus is used to avoid infinitely large potential terms. This
setting is reasonable because large values of V are reduced
because of simultaneously large values of p2. This approx-
imation arises from the Virial theorem and it is also valid
for the regions far from the nucleus. In this way, we avoid
from the presence of the terms p̂2V and V p̂2 in the Pauli
Hamiltonian or extra convolution summations in the rela-
tivistic scheme as we will encounter in the next stage for
derivation of the required equations.

The inclusion of crystallographic notions into the rela-
tivistic quantum chemistry can be achieved by mapping the
problem into the Fourier space. The question is whether the
electron density map is possible to obtain from the relativ-
istic quantum mechanics with the unknown phases of the
crystal structure factors. To see that it is possible, let us start
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with the ZORA eigenvalue equation. ZORA eigenvalue–
eigenfunction equation in position space is
(

p̂2

2
+ V (r)− 1

8
α2 p̂4 + 1

32
α4 p̂6

)
ψ(r)

= εZORAψ(r), (22)

and its counterpart in Fourier (or momentum) space is defined
as

p2

2
ϕ(p) − 1

8
α2 p4ϕ(p)+ 1

32
α4 p6ϕ(p)+ W (p)⊗ ϕ(p)

= εZORAϕ(p), (23)

where W (p) and ϕ(p) are the Fourier transformation of V (r)
and ψ(r), ⊗ stands for the convolution operation, εZORA is
the ZORA energy eigenvalue regardless of repulsive elec-
tron–electron interactions. At this point, keeping in mind
that the phase of the Fourier transform of an eigenfunction is
invariant under the potential multiplication operation (or con-
volution operation in momentum space), further theoretical
developments may be achieved by the connection between
the momentum space and the diffraction theory. Unless oth-
erwise stated after here, bold capital letters indicate the recip-
rocal lattice vectors. Thus, for p = 2πH we have:

ϕ(p) = ϕ(2πH) = (2π)−3/2Φ(H), (24)

W (p) = W (2πH) = (2π)−3/2W̃ (H). (25)

Furthermore, the Fourier coefficients W (p) = W (2πH) of
the potential function V (r) can be stated in terms of the nor-
malized structure factors E(H) well-known in crystallogra-
phy defined as

E(H) =
N∑
j

Z j exp(2π iH · r j )

γ
, (26)

where

γ =
√√√√ N∑

j

Z2
j ,

N is the number of atoms in the unit cell and Z j is the atomic
number of the j th atom [1, Chap. 6, p. 436]. The relation
between the Fourier coefficients W (p) of the potential func-
tion and the normalized structure factors E(H) is as follows
[24];

W (p) = −(2π)−3/2 γ

πH2 E(H). (27)

A noteworthy fact is that the potential term in momentum
space has a unique singularity at the origin of momentum
space, whereas the potential term in coordinate space has
N singularities each of which is located at the position of
nucleus. Since the convolution integral in Eq. (23) can be

replaced by a discrete sum for a crystal, Eq. (23) can be
rewritten as follows

Φ(H) = (γ /π)(
2π2H2 − 2α2π4H4 + 2α4π6H6 − εZORA

)
×

∑
K �=H

E(H − K)Φ(K)
|H − K|2 . (28)

Similarly, another equation which is valid under the first order
regular approximation is that

Φ(H) = (γ /π)(
2π2H2 − 2α2π4H4 + 4α4π6H6 − εFORA

)
×

∑
K �=H

E(H − K)Φ(K)
|H − K|2 . (29)

The last two equations can be used to upgrade the algo-
rithm developed by Bethanis et al. [24] and play a key role to
obtain relativistically valid ab initio crystal structure deter-
mination procedure. In fact, these equations can be regarded
as alternative forms of the Dirac equation in connection with
crystallographic notions. In the limit of c → ∞ (non-
relativistic limit), Eqs. (28) and (29) are reduced to key rela-
tions obtained from the Schrödinger equation [24].

4 Practical procedures and some illustrative results

The simplified spin-free one-component Dirac equations
expressed in terms of crystallographic notions, Eqs. (27)
and (28), are the basis formulae of the relativistic scheme.
However, Eqs. (27) and (28) do not suffice to obtain a self-
consistent scheme. For this purpose, it is reasonable that
E(H) is written as follows [24],

E(H) = s
∑

K

Φ(K)Φ∗(K − H), (30)

where s is a scale factor. Thus, Eqs. (27) and (28) form a
self-consistent system to be solved by an iterative procedure
with the aid of Eqs. (30).

Main principles of the algorithm developed by Bethanis
et al. [24] were not changed. The moduli of the complex num-
bers E required for running these formulae were obtained
from open-access diffraction data of a compound containing
heavy elements and kept constant throughout the compu-
tations. Considerations related to crystallographic symme-
try operations are not included in the calculations. Initial
trial values of phases are introduced for a small subset of
measured moduli of Es, and initial values for Φs are arbi-
trarily assigned to whole set of Φ(K). The values of Φ(H)
prescribed by Eqs. (28) and (29) are recycled through two
different routes. On the one hand, while they are introduced
as Φ(K) of Eqs. (28) and (29) in the next cycle, on the other
hand they are used in the right-hand entity of Eq. (30) in
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Table 1 List of the five best-ranked solutions at α4-accuracy level

Multisolution No. of calculated Mean phase errors (◦)
trial no. phases

Non-relativistic Relativistic

ZORA FORA

18 343 84,1 83.6 82.9

21 410 26,7 25.9 25.2

28 417 76,8 75.2 74.8

33 426 56,2 55.3 54.8

47 404 68,4 67.5 67.1

The other solutions have mean phase error (MPE) higher than 84◦

order to generate new values of E(H). In each cycle, only
the phases of E(H) are changed and new Es are calculated
with the aid of Eq. (30), unless self-consistency between the
consecutively obtained set of E(H)s is achieved, furthermore
ZORA and FORA energy values without regard to electron
correlation effects are recalculated in each cycle and subse-
quently inserted in Eqs. (28) and (29) for the next cycle.

The above theory at α4-accuracy level was tested with a
crystal structure previously reported [29], cis-(1,4-dithiane-
S,S′)diiodoplatinum(II), which is crystallized in acentric
space group P43212, and the results regarding the compound
were contrasted with non-relativistic ones in Table 1. To be
able to compare the relativistic results with non-relativis-
tic ones, the mean error between the calculated and correct
phase prescribed by Eq. (26) was used. According to the
results in Table 1, the relativistically calculated phases, of the
observed set of Es are not considerably different from non-
relativistic phases and the first ranked solution (MPE = 25.2◦)
approximately corresponds to correct values of phases. Fur-
thermore, accuracy of the calculated phases increases as the
order of regular approximation is raised. The most important

result is also that the relativistic phase assignment procedure
generates more precise values for the phases than those of its
non-relativistic counterpart. As can be seen from Eq. (26),
the phases of normalized structure factors are closely related
to the atomic positions. Therefore, differences between the
relativistic and the non-relativistic phase assignment proce-
dure give rise to small changes in atomic positions. The elec-
tron density function on the (112) plane corresponding to
the coordination plane of cis-(1,4-dithiane-S,S′)diiodoplati-
num(II) [29], which is obtained from the Fourier transform
of the set of E(H)s for which phase assignment is achieved
with the FORA results of the best-ranked solution, is shown in
Fig. 1. It is obvious that the electron density distribution cor-
responding to the best-ranked solution is sufficient to deter-
mine the atomic positions in the region of interest. However,
in the presence of heavy atoms, it is not easy to determine
positions of the light atoms such as hydrogen because of their
small X-ray scattering factors as is in routine crystallographic
studies.

In conclusion, the relativistic formulation presented here
leads to an alternative way of crystal structure determination
based on the Dirac equation. A notable advantage of this for-
mulation is that it supplies a computational scheme having
controllable accuracy level. Fine structure constant α con-
trols accuracy level of the relativistic computation scheme.
Although the formulation presented here has an accuracy
level of α4, it can be easily extended to relativistically higher
accuracy levels. However, the present relativistic scheme
cannot be used for precise experimental determination of
ZORA and FORA eigenvalues because of the fact that elec-
tron correlation effects are overlooked for the sake of obtain-
ing a tractable formulation.
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Fig. 1 Electron density
function parallel to (112) plane
with iso-surface level of 0.3
eÅ−3
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